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1 Introduction

V Oe-r objective is to describe a method for constructing an observer foi'the

dynamical system

(t W f (Xt)) + g, (x-t)) Us,(t), (O) = (1)

y h(t) = h :),

as the asymptotic limit of nonlinear filters associated with the "noisy" ver-
,? : ,s io n o f (1 ) : .. .T.

dx'(t) = f(z"(t))dt + g, (x'(t))ui(t) +v'iN(x'(t))dw(t), (2); ,~~~=1(x(), (2

x'(o) = ,
* d '(t) = h(x'(t))dt +vrRdv(t), C'(0)=0,

withe --+ 0. Here x(t) E R.1?, y(t) E E P as usual. The method is motivated

by some large deviation results of Hijab [3], [4] for the conditional measures
P t, of (2).

In the present paper we present results of this general method as applied
to the linear case and a certain class of nonlinear systems. The general

nonlinear problem will be treated elsewhere.

2 Observers for Linear Systems

In this section we provide a complete description of the method as it applies

to linear systems. The results are improvements and completions of earlier

preliminary accounts provided in [1], [2].
*O The method constructs explicitly an observer for the linear system

(t) = Ax(t) + Bu(t), x(O) = xo, (3)

11(t) = C(t),

as the asymptotic limit of (Kalman) filters for a family of associated filtering

O problems

dx'(t) Ax'(t)dt + Bu(t)dt + Vi/Ndw(t), X'(0) = 4, (4)

df'(t) = Cx'(t)dt + Vc/Rdv(t), f'(0) = 0.

i1
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Such a construction is suggested by the fact that for certain choices of

Q0 = cov(x'), the filters are independent of c, as discussed in Baras and
Krishnaprasad [1]. Also, the solutions of (4) converge in probability as
c -* 0 to the solution of (3).

The work of Hijab [3], 14] is indispensible here in deriving a large de-
viation principle for the conditional measures P.', (see Section 2.3), and
identifying the limit of the filters for (4) as an associated deterministic
estimator.

2.1 Observers and Filters

We assume as usual that x(t) E IR", u(t) E R"', y(t) E I P, and t u u(t)
is piecewise continuous.

Recall that the observer problem consists of constructing a dynamical
system

m(t) = Er() + Fu(t) + Gy(t), m(O) = mo, (5)
-'". so that the errorso e(t) = z(t) - Hm(t) (6)

decays exponentially fast to zero, at a rate controlled by the designer, in-
dependent from the choice of mo and x0. Here the matrices E, F, G and

H are possibly time-varying and the dimension of m(t) is not necessarily
n. This of course reflects the fact that the initial condition x0 is unknown,
and the best that can be done is to approximately estimate z(t) by Hrn(t)

-P in this way.
Solutions to this problem are well known, first given by Luenberger 161.

In particular, if the pair (C,A) is detectable, then there exists a matrix r
V such that the matrix A + rc has eigenvalues in the open left half plane.

Then set
E=A+rC, F=B, G=-r, H0=1.

In this case the error (6) satisfies

(t)= (A + rc)e(t), e(0) = -

and the eigenvalues of A + rc can be arbitrarily assigned by the designer
if and only if (C,A) is observable.

2
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Consider the system (3). Define C(t) = fofy(s)ds, so that (3) becomes

.i(t) = Ax(t) + Bu(t), x(O) = xo, (7)

_ (t = CWt), (0) = 0.

Then associate with (7) the family of filtering problems (4), where w, v are
independent standard k-dimensional, respectively p-dimensional Brownian
motions. The initial condition x' is Gaussian, independent from v, w with
E(x'o) = ju0, cov(x0-)=Q0 , where Q is positive definite. Note that the
(small) parameter e controls the intensity of the noise. The matrix R is
assumed positive definite.

As is well known, the minimum variance estimate ,'(t) = E(x(t) I
''(s),O < a < t) for the linear Gaussian filtering problem (4) is given by

the Kalman filter [7]

dil(t) - A(t)dt + Bu(t)dt + Q"(t)C'(RR')-1 C(de'(t) - CI'(t)dt),

S'(0) = 4, (8)

where Q' satisfies the Riccati equation

Q'(t) = AQ'(t) + Qc(t)A' - Q'(t)C'(RR')-CQ'(t) + NN', (9)iQ, Q(0) = Q' / (.

Note that these filters depend on e only via the matrix Q'/e. In fact, if
we choose Q = cQo, then all the filters are independent of c and identical
with the filter for c = 1.

Following Hijab [3], it is convenient to consider the filter (8), (9) as a
map

"" z':c ([o t]., ) - R",()< a < t (t.

52.2 Deterministic Estimation

Following Mortensen [8] and Hijab [3], we associate with (7) the determin-
istic (noisy) system

i(t) = Az(t) + Bu(t) + Nw(t), z(o) =zo, (10)

e(t) = Cz(t) + Rv(t), C(O) = 0,

'5 3
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U and energy cost functional
r...1 1 f t

J ( o,W,V) = ~ (ZO - U) QO (ZO - ;4) + 1J (w(s)'w(s) + v(s)'v(s)) ds,

where t --- w(t) E Rk, t -- , v(t) E F" are piecewise continuous, the rank of
N is n, and Q0 is positive definite.

A minimum energy input triple (z;,w*,v') given C(s), 0 < s < t, is
a triple that minimises J, subject to (10) and produces the given output
record C(s), 0 < a < t. The deterministic or minimum energy estimate of
z(t) given C(s), 0 < a < t, is the endpoint i(t) of the trajectory z"(s), 0 <
a < t, of (10) corresponding to a minimum energy input triple: i(t) = z" (t).

According to Krener [9], i is the solution of the Kalman filter equations

__ i (t) = Ai(t) + Bu(t) + Q(t)C'(RR')-1 (e(t) - Ci(t)), (12)

"(o) =

Q(t) = AQ(t) + Q(t)A' - Q(t)C'(RR')-CQ(t) + NN', (13)

Q(O) = Qo.

As in the stochastic case (Section 2.1), it is convenient to consider the
deterministic filter (12), (13) as a map

~I: C'(10, t], RP)-- ,

Note that the deterministic filter coincides with the stochastic filter for
t = 1, that is, P'. Also, i(t) is obtained from an optimal control problem,
and is determined by a Hamilton-Jacobi-Bellman equation [3], [81.

We now prove that as e -. 0 the stochastic filter 7' (8), (9) converges
, to the deterministic filter .7 (12), (13).

Theorem I Suppose that (4) has initial conditions 4'o Gaussian with mean
0.. 1' and covan'ance Q' satisfying

limQ,= Qo,

4
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0
where Qo is positive definite. Then

n lira E I VCt) - i(t) 12= 0

uniformly in t E [0, T].

Proof: Now Q'(t) -- Q Q(t) uniformly in t E [0,T). Applying Ito's rule to
I i() - i(t) 12 and taking expectations, we find that, given 6 > 0,

~E I V'(t) - i(t) I' < (I m' - A I' +eK (1+ 1 p' 1) + cK) eK%,

Vfor all c sufficiently small, where K > 0. The desired result follows from

this inequality. ED

2.3 Large Deviations

Consider the stochastic differential equation (4), with initial condition xz -

z0 for all c > 0. In this section we take u E 0. Let P, be the probability
measure induced on fl n = C([0, T], I?") by the diffusion z'. It is well known
from the theory of Ventcel-Friedlin (see Varadhan [10]) that the family of
measures P. satisfy a large deviation principle. Moreover, as e -4 0, P.
converges weakly to the degenerate measure concentrated on the unique
solution x of (3).

We now consider the observation equation in (4). Let Q' (C,20) be an
unnormalised conditional measure on (l" of x1 given C E CIP = C(I0, T], 1?P)
where the diffusions are initialised as above. For a "control" t -. w(t),
let z., denote the unique solution to (10). The function v is defined by

O R- 1 (E(t) - Cz,.(t)) when f is C1 . Hijab [4] proved the following large
deviation result for-Q'1(,2o}"

Theorem 2 For any open subset 0 and any closed subset C of 0l",
"UP

liminfcdogQ,'zjf,.)(0) > - (zo, , 0)

Srlim sup dogQO.(,, 0 )(C) < -l(zo,f,C)PI.

04



where for A C Onf,

I (x0 ,,) = inf 2 (w s)'W(s) + Z. (s)'C'Cz,(s)) ds (14)

-jz (s)'C'dC(s) z,.(O) = Zw z A
0g

Proof: Define, for each C E fl',w E Wf,

4(w,) =-C(T)'Cw(T)+

fT ( 'c~ Wt)+ yt)'c'cwct)- (t)'CNN'C'C(t)) dt.

There exist constants A, B depending only on C, such that

.,- (,,,) A + BlIw l.

Then arguing as in Varadhan Jill,

-' But this estimate is enough to prove the theorem. See Hijab [4] and Varad-

han [11] for details. 0

The minimisation in (14) is an optimal control problem similar to the
one in Section 2.2, but with fixed initial condition x0.James and Baras [131

have made a simple generalisation of Theorem 2 in which the variational
problem arising is exactly the optimal control problem for deterministic
estimation in Section 2.2.Ei: Assume that the initial conditions z4 of (4) have (unnormalised) density

q'(Xo) = exp (Z - 1,)'Q;'(XO - P))•

Let Oi.,.o)lc be an unnormalised joint conditional measure of (x',x') on
.J. f x .R" given ( En'r . The following result is quoted from [13).

6
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Theorem 3 For any open subset 0 and any dosed subset C of 11 , and
for any open subset 0 o and any closed bounded subset Co of IRtl, we have

lim.i(nf logQ =.20)l,(0 x  o) > -J (0 x o,)

Sim sup logQ ,o) (C x Co) -J (C x Co, C)

ai! where for A x A0 C rIT X JRn,

J(A x Ao,C) = info {X(o it)'- IQ'(xo-,U) + I(xo,E,)}. (15)

.

This theorem implies that if = f is an actual output record of the
% system (10), then as c --+ 0, Q'.,.))Ie converges weakly to a degenerate mea-

sure concentrated on the optimal initial condition z* and optimal trajectory
z*(s), 0 < s < T of (10) corresponding to a minimum energy input triple.
As pointed out in Section 2.2, the deterministic estimate of the state at time
T is a functional of this optimal path, namely its value at T: £(T) = z'(T).

Thus in a weak sense, V(T) --- 2(T), and the large deviation principle
for Q(.,.0),( characterises the limiting filter as the deterministic filter.

2.4 Observer Design
. From Sections 2.2 and 2.3 it is plain that the deterministic estimator (12),

(13) is a natural candidate for an observer for the linear system (3). We
make the natural assumption that the pair (C, A) is detectable. Recall that
N has rank n and R is positive definite. The design parameters are Qo, N, R
and i.

Then from (12) we define

rh(t) = Am(t) + Bu(t) + Q(t)C'(RR')-1 (y(t) - Cr(t)), (16)

M (o) = o= ,

where Q(t) is the solution of the Riccati equation (13). The inverse P(t) of
Q(t) is the solution of

P(t) = -P(t)A - A'P(t) - P(t)NN'P(t) + C'(RR') C, (17)

P(0) = Po =Q .

7
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Since we are interested in the asymptotic behaviour of e(t) =z(t)-r(t),

it is important to obtain bounds for I1 Q(t) IL II P(t) 11. To this end we
interpret Q(t), P(it ) in terms of control problems. Write H = R C.

Consider the control problem

- = A'7 + H'v, q (T) = h, (18)

where h is given and v is the control. We minimise

J1(v) = rl(O)'Qol(O) + j (v(t)'v(t) + 17 (t)'NN'77(t)) dt. (19)

Then the optimal control for (18), (19) is given by the following algorithm.
Consider the system of equations:

A = A 1 + NN'6, A(0) = Qo (0), (20)• , - + =A'^ - H'I CT) = h.

Then an optimal control is 0(t) = -Hi(t). Moreover,

min J1(v) = h'Q(T)h = !(T)h. (21)

*1 In addition, the following relation holds:

5 ,(t) = Q(t) 5(t), for all t, (22)

where Q(t) is the solution of the Riccati equation (13).
'. Similarly, consider the control problem

= AA + Nv, A(T) = h. (23)

* Again h is given and v is the control. We minimise

J2(v) = x (0)'P 0 ,(0) + j (v(t)'v(t) + X(t)'H'H),(t)) dt. (24)

The system of necessary conditions is given by

X = Ai + NN', i(T) = h, (25)
,,- € = A'! - H'R , 6 (0) = Po (0),

I8
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and an optimal control is t(t) = N'4(t), with

mi J2(v) =h'P(T)h =(T)h, (26)

and
4 (t) = P(t)A(t), for all t, (27)

where P(t) is the solution of (17).
Since R is positive definite, in particular nonsingular, the pair (H, A) is

detectable. Thus there exists a matrix A such that

" .l*' (A + AH) 1 < -a 0  1171, ao>0. (28)

Also, since N has rank n, the pair (A, N) is controllable, and there exists

a matrix r such that

.A'(A + Nr) A > 8o 1 A 12, #o > 0. (29)
-

Theorem 4 Under the above assumptions, we have:

J(iIl 11 N112 +11 A112

jQ(T) < ([1Q0 II + ) q (30)• - 2a 0

IP(T)II ( : P 11 + 11 II2 + I11 r 112  (31)

Proof: Consider in (18) a feedback control

v v(t) = A'v(t).

The corresponding state is the solution of

Theefre =(A' + HT) r7, t7 (T) =h. (32),,Or Therefore

h'Q(T)h < i7(0)'Qor(0) + i7(t)' (NN' + AA') Y7(t)dt. (33)

9
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From (32) it flosthat

v7(0) 1' -2 j7 (t) (NN' + A A) 17 (t) dt =h12

and from (28) we deduce that j V7(0) 12 < Ih 12 and

Therefore from (33) it follows that

h'Q(T)h < h' (i oI 1I 2  I1 2 h

*which proves (30).
Next, consider in (23) the feedback control

v (t) = r A(t).

Then
=(A +Nr) A, A (T)=h, (34)

and we have

h'P(T)h < A(O)'POX(G) + j (t)' (r7'1 + H'H) AMI)dt. (35)

Using (29) and (34) it follows that

1 2 > I A (O) 12 +2f 0 jI I A (t) 12dt

and hence
h 12

X~t)(2 t <2#Yo

This together with (35) yields (31). 0

Rernark This theorem is true if rankN < n, provided that (A, N) is
controllable.

10
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2.5 Convergence of the Linear Observer

,: We now use the bounds (30), (31) to prove the following.

Theorem 5 The dynamical system (16), (13) is an observer for the

linear control system (3) provided that (C,A) is detectable and the above
assumptions hold. That is, there exists constants K > 0, -y > 0 such that

Ix(t) - r(t) I <K -=o - mo le- t

N for alI t > 0.

Proof: From (30), (31) it follows that

P(t)AI (36)

and A. < AlP(t)A < p A. 12. (37)

Now e(t) = x(t) - m(t) satisfies

i (t) = (A - Q(t)H'H) e(t).

Using (17), (36) we deduce

-e(t)'P(t)e(t) = -e(t)' (P(t)NN'P(t) + H'H) e(t)

< -e(t)'P(t)NN'P(t)e(t)

< q o !0q2

where NN' > ro', ro > 0. This together with (37) implies

dt pq

Set y = ro/2pq2 . Therefore

E:::: e(t)'P(t)e(t) <e(O)'Poe(O)e- ' T

"ii -11



and
I e(t) 12 < qe(O)'Poe(O)e - 1 I

from which the desired result follows. -

Finally, we state the following result which is a consequece of standard
facts concerning the Riccati equation (13).

Theorem 6 Given the linear system (3), where (C,A) is detectable, an
n x m matrix N such that (A,N) is stabilisable, and a positive definite
matrix R, then there exists a unique non-negative definite solution Q to
the algebraic Riccati equation

0 AQ + QA'- QC'(RR')-1 CQ + NN' = 0,

the matrix A - QC'(RR')-IC is exponentially stable, and the system

rh(t) = Am(t) + Bu(t) + QC'(RR')-1 (y(t) - Cm(t)),

m (0) = too,

is a time-invariant observer for the given system.

3 Observers for Nonlinear Systems

We consider a nonlinear dynamical system with linear observations:

S(t) = f(x (t)), X(0) = X0 , (38)

* Y(t) = Cx(t).

We assume that f : ? --+ 1W' is smooth with bounded derivatives, and
write

A(x) = Df(z)

• for the n x n matrix of first derivatives. Set

IIAII= up II A(z)II.

12
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3.1 Observer Design

Motivated by the linear design, we construct an observer for (38) as an ap-
proximation to the corresponding deterministic estimator. Associate with
(38) the system

f(t) = f(z(t)) + Nw(t), z(0) = zo, (39)

(t) = Cz(t) + Rv(t), c(o) = 0,

where rankN = n, R is positive definite, and the energy functional

J,(zo,w,v) =V (zo- s)P e(Zo-jt)+ c) (w (s)'w (s) + v(s)'v (s)) ds,, (40)

where P0 is positive definite.

According to Hijab [3], the deterministic estimate i is the solution of

" (t) = f(-(t)) + Q(t)C'(RR') - (e(t) - Cz(t)) , (41)

S(0) =

where
Q(t)-1= D 2S(i(t),t),

and S(z, t) is the solution of the Hamilton-Jacobi- Bellman equation

. S(z, t) + H(z,t, DS(z,t)) = 0, (42)

S (Zo) = (Z - 'U)'Po(zo - 1),
where

H(z,t,a) = af(z) + aNN'a' - z'C'(RR') -Cz + (t)'Cz.
2 2

In the linear case the solution of (42) is a quadratic form and Q(t) =

P(t)- ' satisfies a Riccati equation. However, in the general nonlinear case,
_ solutions are not smooth and must be interpreted in the viscosity sense.

Thus (41) is not well defined in the large. We seek therefore to approximate

S(z,t) by a quadratic form, and replace the Hamilton-Jacobi equation (42)

13
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by a simpler Riccati equation. In this way we will obtain a well defined
observer. Write H = R-C.

Suppose that S is smooth in a neighbourhood of (p,0). Denoting com-
ponents by superscripts and partial derivatives by subscripts, and using the
summation convention, for small t we have at (i(t),t):

d, k fk 2 skdtj () t = -SSk

-Sk,(NN')-Sj + (H'H)';,

using the fact that S (i(t),t) = 0 from the definition of i(t). If S were
quadratic, the third order terms vanish. This suggests that we replace (41)

by

rh(t) = f(m(t)) + Q(t)C'(RR')-' (y(t) - Cm(t)), (43)

M (0) = no

where now Q(t) = P(t)-1 , and P(t) satisfies the Riccati equation

P(t) = -P(t)A(m(t)) - A(m(t))'P(t) - P(t)NN'P(t) + H'H, (44)

P(O) = P0.

Also Q(t) is the solution of

Q(t) = A(rn(t))'Q(t) + Q(t)A(m(t)) - Q(t)H'HQ(t) + NN', (45)

Q(0) = Q0 P.

r. Once again it is important to obtain bounds for 1Q(t) 1, 11 P(t) 11. To
recover estimates similar to (30), (31), we assume that the pair (H,A(z))

* is uniformly detectable, that is, there exists a bounded Borel matrix valued
function A(z) such thati ' A(x) + A() H) 17 :5 -,0o 1 7 1, ,Xo > o, (46)

for all z E P". Since N has rank n and II A 11 < o, the pair (A(x),N)
is uniformlyj controllable, and thus there exists a bounded Borel r(z) such
that':A' (A~x) + Nr(x)) A > lo 1 12I, go > 0, (47)

14



II'5.' for all x E i?". Set

IA II s sup A(z)ii, ItrI= sup IIr(x)II
mJSEE" SEE"(

Then using the methods of Section 2.4, the following generalisation of
Theorem 4 can be proven.

- Theorem 7 Under the above assumptions, we have:

,.';~~~~1 1NQTI I 0I IA 112 + 11 A If'
1 -Q(T)= 1IS Q0 11 q, (48),.. 2a0

: -r 1! P ( ) I I P I + I H 11' + 11 112I
-(T 1=< 1 1 0 p. (49)

3.2 Asymptotic Convergence

We wish to prove that the system (43), (45) is an observer for the nonlinear
system (38). This is possible provided that we can bound the region where
the initial condition lies and provided the second derivative of f is not too
large.

Consider DA(x) = D 2 f(z). For any x, Df(x) E L(1Rn,L(i?",)R ))
and we denote 11 D 2f 11 the suprimum over x of the norm of the linear
operator D 2f(X).

Note that the numbers p and q defined by (48), (49) are functions of
the design parameters P, N, and R; and the given data f and C. The
designer is free to chose the parameters within the stated constraints. Also

Ap NN' > r0 I for some ro > 0. Define

S(Po, N,R) ro (50)
qp'/2  P2

Theorem 8 Assume that

V.
I -o - ma III D=f11 < max p(Po,N,R). (51)

P0 .N,R

15
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" Then the dynamical system (43), (45) is an observer for the nonlinear

system (38) prot,'ded that (C,A(x)) is uniformly detectable and the above
- "assumpti'ons hold. That is, there ezists constants K > 0, -y > 0 such that

x z(t) - r(t) I -K x o - m0 e- '

.-" for all t > 0 .

, .

'.

" Proof: Now e(t) = (t) - re(t) satisfies

i (t) f f(x (t)) - f (m (t)) - Q (t) H'H e(t).

From (44) we deduce
d e (t)'P (t)ec(t) e (t)' P(t) N'P(t) + H'H) e (t) (52)

•+2e(t)'P(t) (f (z(t)) - f((t)) - Q(t)H'He(t))
b "..)'"."..t)= -e(t)' (P(t)NN'P(t) + H'H) e(t)

+2e(t)'P(t) 0 1 0 rD.2 f (m(t) + rsx(t)) e(t)2drds

, e(t)' -9 + I P an(t)e(t)1 I/ 11 D 'f II e(t). (53)

By the assumption (51) we can find Po, N, R such that

I e(o) III D2 f 11 < (Po, N,R),

hence
Po/'2e(0) III D2f I ro

q 2 p1/2'

or
ro /2 D2f < 0.
- + I P /e(O) I p 1D II <

Since P'/(t)e(t) is continuous, there exists an interval [0,t) such that

on.l. -0 .+ I P'/:(t)e(t) Ip'/2 *Df' < 0,

on 10,to). But from (53),

dd I P'/2(t)e(t) < 0

16

4%
a.'

O4%



on [0, to), and thus
:,.Ip'/ 2 (tOe(t) I < P '2 e(o) I

on [0, to) By continuity we have

I P'/2 (to)e(to) I P /le(o) I,

and we can proceed from to on. Therefore in fact

1 (r0 )
P"/ 2(t)e(t) < p12llDf -I , 6 >0,

for all t > 0, and (53) implies

d
Wt e(t)'P(t)e(t) < - I e(t) 12

But from (49),

e(t)'P(t)e(t) II P(t) Ill eC(t) 12  < p e(t) 12,

hence
d 6

which implies

e(t)'P(t)e(t) < (0)'Poe(0)e-,.

.- Therefore, using (48),
1 C(t) 12 <- II Q(t) I1le(t)lP(t)e(t)

,.-:.:5 < e~t)'P(t)e~t)

-. qe(O)'Poe(O)e - t,

from which we deduce the desired result. 0

Remark It follows from (52) that if the design parameters Po, N, R were
chosen so that

__0 <6 q -p11A 11,

. then the assumption (51) is unnecessary. Then (43), (45) is an observer for

.- (38) independent of the initial conditions. Unfortunately this inequality is

at best difficult to achieve.
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